Modelling some physical and mechanical properties of heat-treated Scotch pine using artificial neural network

نویسندگان

چکیده

In this study, some physical and mechanical properties of yellow pine wood (Pinus sylvestris), which is used extensively in furniture industry, were tested after heat treatment. The findings obtained modelled by artificial neural network (ANN) interval values related to temperature time variations tried be estimated. This makes it easier reach intermediate values, aims save the relevant researchers from trial load all heating parameters during design/production stages. study scotch samples heat-treated at 150, 160, 170, 180, 190 200 °C for 2, 4 6 hours, under normal atmosphere conditions. Color changes, weight losses compression strength parallel grain determined. After experimental modelling procedure was performed ANN using two different learning algorithm- Levenberg-Marquardt (LM) Scaled Conjugate Gradient (SCG) 15 hidden neurons. best model 2-7-6 structure LM algorithm. Mean absolute percentage error (MAPE) found below 8.0% estimated color parameters. loss 5.79% 1.50%, respectively. It concluded that can successfully predict studied samples.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

determination of some physical and mechanical properties red bean

چکیده: در این تحقیق، برخی خواص فیزیکی و مکانیکی لوبیا قرمز به-صورت تابعی از محتوی رطوبت بررسی شد. نتایج نشان داد که رطوبت بر خواص فیزیکی لوبیا قرمز شامل طول، عرض، ضخامت، قطر متوسط هندسی، قطر متوسط حسابی، سطح تصویر شده، حجم، چگالی توده، تخلخل، وزن هزار دانه و زاویه ی استقرار استاتیکی در سطح احتمال 1 درصد اثر معنی داری دارد. به طوری که با افزایش رطوبت از 54/7 به 12 درصد بر پایه خشک طول، عرض، ضخام...

15 صفحه اول

scour modeling piles of kambuzia industrial city bridge using hec-ras and artificial neural network

today, scouring is one of the important topics in the river and coastal engineering so that the most destruction in the bridges is occurred due to this phenomenon. whereas the bridges are assumed as the most important connecting structures in the communications roads in the country and their importance is doubled while floodwater, thus exact design and maintenance thereof is very crucial. f...

Modelling of some soil physical quality indicators using hybrid algorithm principal component analysis - artificial neural network

One of the important issues in the analysis of soils is to evaluate their features. In estimation of the hardly available properties, it seems the using of Data mining is appropriate. Therefore, the modelling of some soil quality indicators, using some of the early features of soil which have been proved by some researchers, have been considered. For this purpose, 140 disturbed and 140 undistur...

متن کامل

modelling some physical characteristics of pomegranate (punica granatum l.) fruit during ripening using artificial neural network

pomegranate is an important iranian-native fruit, with many varieties cultivated. although the volume of data on the importance of pomegranates in human nutrition has increased tremendously in the last years, the physical properties of the pomegranate fruit during fruit maturity have not yet been studied in detail. thus, the present study aimed to evaluate changes in physical characteristics of...

متن کامل

Prediction of Mechanical Properties of TWIP Steels using Artificial Neural Network Modeling

In recent years, great attention has been paid to the development of high manganese austenitic TWIP steels exhibiting high tensile strength and exceptional total elongation. Due to low stacking fault energy (SFE), cross slip becomes more difficult in these steels and mechanical twinning is then the favored deformation mode besides dislocation gliding. Chemical composition along with processing ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Turkish Journal of Forestry

سال: 2021

ISSN: ['2149-3898']

DOI: https://doi.org/10.18182/tjf.874681